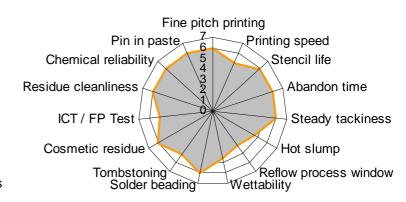
ECOREL[™] FREE 007-16 T4

NO SILVER/ LOW VOIDING HALOGEN FREE SOLDER PASTE

FEATURES

ECOREL™ FREE 007-16 T4 is part of our second generation of No Clean solder paste combining the metallurgical properties and cost benefits of SnCu alloy - an eutectic leadfree alloy - with high performance chemistry of the ECOREL™ range assuring a robust assembly process for high volume electronics. The fine particle size distribution of its type 4 powder enhances the printing quality for small apertures.

- Excellent visual solder joint cosmetics/ transparent residues even after multiple reflow cycles
- High first pass yield testability in ICT
- Very good wetting in different board finishes including OSP
- Very Low solder void percentage


SPECIFICATIONS

Alloy	Sn99.3Cu0.7 doped
Powder size distribution (microns)	20 - 38
Melting point (°C)	227
Metal content (%)	88 ± 0,5
Halogen content	No Halogen
Viscosity* (Pa.s 20°C) *Brookfield RVT - TF at 5 rpm	800 - 1000
Post reflow residues	approximately 5% by w/w

CHARACTERISTICS

The radar chart below shows the excellent printing capabilities of **ECOREL[™] FREE 007-16 T4** which allow for high speed printing, excellent abandon time, and long/ steady tackiness. Its large process window allows for good soldering of medium and large boards with a wide range of component sizes.

- Stencil life: more than 12 hr continuous printing process
- Abandon time: more than 4 hr time between 2 prints with good restart (0.4 mm pitch)
- Steady tackiness: more than 16 hr
- High performance for pin in paste process

FUNCTIONAL TESTS	Results	Procedures
Flux Classification	ROL0	ANSI/J-STD-004
	113	ISO 9454
Solder balling test	pass	ANSI/J-STD-005
Copper mirror	pass	ANSI/J-STD-004
Chromate paper	pass	ANSI/J-STD-004
Copper corrosion	pass	ANSI/J-STD-004
Surface Insulation Resistance Ohms	pass	
After 7 days		ANSI/J-STD-004
85°C - 85 % RH - 50 Volts	> 10 ¹⁰	ANSI/3-31D-004
25°C - 65 % RH	> 10 ¹²	

PACKAGING TYPE

Jars 250g or 500g Cartridges 600g or 1200g

Proflow cassette

STORAGE & SHELF LIFE

To ensure the best product performance, the recommended storage temperature range is from 5°C to 10°C. A shelf life of 12 months is achieved under these conditions. For cartridges and cassettes, the shelf life is 9 months.

For an optimal preservation, store cartridges in vertical position, tip downwards.

PROCESS PARAMETERS

Solder paste preparation

Before printing, it is essential to properly mix the solder paste, either manually with a spatula, or by doing several preliminary prints on the stencil.

Printing guideline

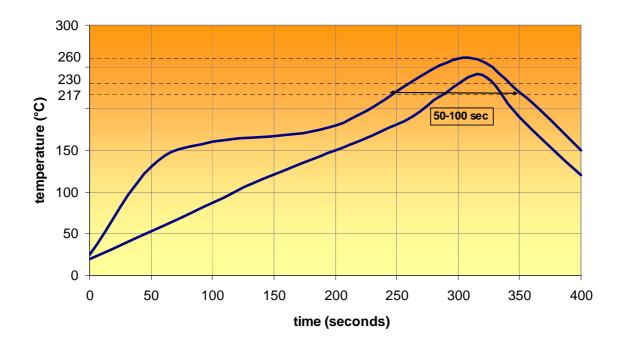
Apply on the stencil solder paste to form a roll of 1 to 2 cm of diameter all along the squeegee. This way, the solder paste will roll easily under the squeegees to offer excellent printing quality.

Printing speed: 20 to 150 mm/sec.

Minimum pitch: 0.3 mm

Pressure depends on printing speed

Squeegee length	Printing Speed	Pressure
250	50 mm/sec	4 Kg
250	100 mm/sec	6 Kg
250	150 mm/sec	8 Kg


Reflow guideline

A linear preheating ramp rate is recommended. But a high density board may require a soak zone during preheating to stabilize the temperature over the circuit board before peak reflow.

Preheating ramp rate with linear preheating	0.7 to 1.2°C/s according the circuit board size and density
Preheating steps in case of preheating soak zone	 From 20 to 150°C: ramp rate 1 to 2°C/s soak zone between 150 to 180°C for 60 to 140s from 170°C to liquidus 1 to 2°C/s
Peak ramp rate	1 to 2°C/s
Peak temperature	240 to 260°C It is recommended to verify components heat resistance to preserve their integrity.
Time above liquidus	50 to 100s (60 to 80s typical)
Cooling ramp rate	1.8 to 4°C/s

Examples of reflow profiles ECOREL™ FREE 007-16 T4

- With linear preheat
- With soak zone

CLEANING

After soldering, the flux residue remaining of **ECORELTM FREE 007-16 T4** does not have to be removed by a cleaning operation. However, if cleaning is required, the residue left after reflow can be easily removed if needed with a large range of cleaning solutions, such as detergents, hydro-carbonated solvents or halogenated solvents, all included in the INVENTEC cleaning range. This is also a best practice for a robust adhesion if conformal coating is to be applied on the board. In the table below is a quick reference about INVENTEC PCBA defluxing solutions.

PROCESS Type	INVENTEC PCBA Defluxing solutions
Manual	Topklean TM EL10F/ Topklean TM EL60/ Quicksolv TM DEF90 EL
Aqueous System (Immersion or spray)	Promoclean [™] DISPER 605 and DISPER 607
Novec [™] HFE + Co-solvent	Topklean [™] EL 20A and EL 20R
Under Vacuum System	Topklean [™] EL 20D
Azeotropic Solvent	Promosolv TM 70ES

HSE

No issues when used as recommended.

Please refer to Material Safety Data Sheet before use.

INVENTEC Material Safety Data sheets can be found at www.quickfds.com

Although the conformity to ROHS 2002/95CE applies EQUIPMENT put on the market and not a component in particular, we warranty that this product contains less than 0.1% of mercury, lead, chromium VI, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) and less than 0.01% for the cadmium, in accordance with the decision of The European Commission dated 18/08/2005, fixing the maximal concentration values.

This data is based on information that the manufacturer believe to be reliable and offered in good faith. In no event will INVENTEC be responsible for special, incidental and consequential damages. The user is responsible to the Administrative Authorities (regulations for the protection of the Environment) for the conformity of his installation.

FPW.SB.10304 000 - 20/06/2013